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Although it is clear that errors in genotyping data can lead to severe errors in linkage analysis, there is as yet no
consensus strategy for identification of genotyping errors. Strategies include comparison of duplicate samples,
independent calling of alleles, and Mendelian-inheritance–error checking. This study aimed to develop a better
understanding of error types associated with microsatellite genotyping, as a first step toward development of a
rational error-detection strategy. Two microsatellite marker sets (a commercial genomewide set and a custom-
designed fine-resolution mapping set) were used to generate 118,420 and 22,500 initial genotypes and 10,088 and
8,328 duplicates, respectively. Mendelian-inheritance errors were identified by PedManager software, and concor-
dance was determined for the duplicate samples. Concordance checking identifies only human errors, whereas
Mendelian-inheritance–error checking is capable of detection of additional errors, such as mutations and null alleles.
Neither strategy is able to detect all errors. Inheritance checking of the commercial marker data identified that the
results contained 0.13% human errors and 0.12% other errors (0.25% total error), whereas concordance checking
found 0.16% human errors. Similarly, Mendelian-inheritance–error checking of the custom-set data identified 1.37%
errors, compared with 2.38% human errors identified by concordance checking. A greater variety of error types
were detected by Mendelian-inheritance–error checking than by duplication of samples or by independent reanalysis
of gels. These data suggest that Mendelian-inheritance–error checking is a worthwhile strategy for both types of
genotyping data, whereas fine-mapping studies benefit more from concordance checking than do studies using
commercial marker data. Maximization of error identification increases the likelihood of linkage when complex
diseases are analyzed.

Introduction

Microsatellite-repeat markers are widely used as a pow-
erful tool in genetic mapping (Dixon et al. 1992; Roberts
et al. 1999), population genetics (Huges and Queller
1993; Taylor et al. 1994), linkage analysis (Georges et
al. 1993), evolutionary studies (Bowcock et al. 1994),
and forensic medicine (Herber and Herold 1998; Sac-
chetti et al. 1999). The accurate measurement of micro-
satellite fragment sizes is clearly important for linkage
studies, and errors must be minimized because incorrect
data will reduce the likelihood that linkage can be de-
tected. In addition, as microsatellite measurement finds
greater clinical and forensic application, the demand for
rigorous estimation of errors will increase.
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Although it is clear that errors in genotyping data can
lead to severe errors in analysis, there is as yet no con-
sensus as to how genotyping errors should be identified
and what appropriate correction steps must be invoked
to minimize these errors. Several strategies for identi-
fication and removal of incorrect data have been sug-
gested (Ghosh et al. 1997; Pálsson et al. 1999), in order
to produce the most error-free data possible for linkage
analysis. For the most part, these strategies involve er-
ror-rate assumption (Lincoln and Lander 1992; Gold-
stein et al. 1997). However, a better understanding of
what constitutes an error will enable appropriate iden-
tification and reduction of errors, resulting in both a
more complete data set and an increased likelihood that
linkage with a particular phenotype will be identified.

Genotyping errors arising from amplification diffi-
culties have, to some extent, been addressed. For ex-
ample, there are several commercially available micro-
satellite-marker linkage sets, comprising di-, tri-, or
tetranucleotide repeats, that provide coverage of the en-
tire human genome and that have a resolution range of
5–20 cM (PE Biosystems ABI PRISM Linkage Mapping
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Sets HD5, MD10, and LD20 and Research Genetics
CHLC Human screening set/Weber versions 6–10).
These marker sets have helped in the reduction of errors
in data because they use primers chosen not only for
location but also for fidelity of amplification. Some of
the sets also incorporate a consensus sequence (PIG-
tailing [Brownstein et al. 1996]), to encourage the ad-
dition of an extra A at the end of a PCR product by
the terminal transferase activity of Taq polymerase.
Such consistency helps make allele identification clearer.
In contrast, there are no primer sets available commer-
cially that cover the genome at !5 cM, and therefore
fine-mapping studies usually are performed with prim-
ers chosen for their location rather than for their reli-
ability or ease of use.

One overriding consideration with regard to micro-
satellite genotyping is that, even though several pro-
grams are available to help streamline the process, it is
still a labor-intensive operation requiring manual as-
sessment and correction of genotypes. Although it is
predictable that well-defined commercial primer sets
will be easier to call than custom-designed fine-mapping
sets, they both still require considerable human input.
Preferential amplification of competing microsatellite
pairs makes multiplexing reactions difficult to balance
and, even though it is possible to do so, it is impractical
for large-scale high-throughput applications. For this
reason, each microsatellite is amplified individually and
later is combined into appropriate electrophoretic run-
ning panels. Product sizes are predetermined by choice
of primers, so that several nonoverlapping products can
be run in the same lane. The use of a fluorescent tag on
the end of one of the primer pairs for each microsat-
ellite enables three different colors to be used, so that
up to 20 PCR products can be combined as one lane,
or “panel,” of microsatellite markers (LMSV2; PE
Biosystems).

After electrophoresis, data collected from the run are
analyzed, first by lane assignment and then by size-stan-
dard assignment and size calling. Only then are the data
ready to be genotyped. Templates using predefined allele
assignments are used for the first round of genotyping,
followed by manual checking of each call. Since allele
sizes are assigned from a standard curve, the initial re-
sults are not in whole base pairs. Each allele is assigned
to a “bin,” which is predefined according to the average
size of each allele. Once this has been completed, the
results are checked for errors. Some microsatellites used
are not true di-, tri-, or tetranucleotide repeats but are
compound repeats, in which there also may be a single
nucleotide polymorphism. These alleles are 1 bp differ-
ent in size and need extra care when genotyping is per-
formed. Other microsatellites show “null” alleles, in
which one of the two alleles fails to amplify (usually

because of a mutation in the priming site), and are iden-
tifiable on the basis of pedigree information.

There is, therefore, a range of error types that can be
introduced during each step associated with the geno-
typing process—a range that includes human-handling
and calling errors, equipment and reagent failures, and
errors caused by mutations of the DNA. Strategies have
been proposed to decrease or identify these errors. These
include the extreme suggestion of genotyping in dupli-
cate and comparing both sets of data as well as having
all data viewed separately by two people and then hav-
ing the allele calling compared. A better understanding
of these errors will allow a more rational approach to
detection of errors and, therefore, will improve the over-
all quality of data obtained from microsatellite analysis.
In the present study, we assessed both a commercial set
and a fine-mapping set of human primers, to determine
the frequency and type of errors that arise in each case,
using Mendelian-inheritance–error checking for error
identification. Duplication methods for error identifi-
cation also were compared with the Mendelian-inher-
itance–error approach to error detection. The outcome
of this study has enabled us to derive a strategy to reduce
overall errors, thereby allowing us to provide the correct
balance between quality of data and the cost and time
involved in the genotyping process.

Material and Methods

Primer Sets

Two primer sets were used. The first was a commercial
set (LMSV2; PE Biosystems) that has a 10-cM density
covering all human chromosomes except the Y chro-
mosome. It consists of 400 primer pairs divided into 28
panels, with 10–20 markers per panel. The second
primer set (FMS) was custom designed for fine mapping
of positive regions identified in a particular project (Lev-
inson et al. 1998). This set covered five chromosomes
and comprised 60 markers divided into seven panels
with 3–12 markers per panel.

LMSV2 amplifies dinucleotide microsatellite markers,
whereas FMS is directed toward di-, tri-, and tetranu-
cleotide microsatellites. For both mapping sets, one
primer of each pair was fluorescently labeled with one
of three fluorescein-derived fluorophores, which were
designated “6-FAM,” “HEX,” and “NED.”

Samples

DNA samples from 310 individuals were amplified
with LMSV2, and DNA samples from 375 individuals
were amplified with FMS. The family data for the two
studies were very similar; the LMSV2 data consisted of
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74 pedigrees with an average of 4.19 people genotyped
per pedigree, and the FMS data consisted of 71 pedigrees
with an average of 5.28 people genotyped per family.
Parents were typed whenever possible, as were some sib-
lings and grandparents.

Genotyping Amplification Protocol

Each amplification used 30 ng of DNA in 6-ml reac-
tions. DNA and reagents were aliquoted, by a Tecan
Genesis workstation, into 384-well plates. The micro-
satellite markers were amplified, by PE Biosystems en-
zyme AmpliTaq Gold on MJ Research Tetrad thermal
cyclers, with the recommended cycling protocol for the
enzyme. Each marker was amplified individually and
was pooled manually into panels according to the pre-
determined panels for each panel set.

The pooled PCR products were electrophoresed
through polyacrylamide gels on PE Biosystems 377 au-
tomated sequencers using the recommended gel condi-
tions and run protocol. PstI-cut lambda-phage DNA la-
beled with 6-carboxy rhodamine (GS500-ROX; PE
Biosystems) was included in each lane, as a size standard.

Genotyping Analysis Protocol

Electrophoresis data were transferred to an offline
computer and were tracked as batches by a Quickeys
script and GENESCAN 3.1. Tracking of each gel was
manually checked before analysis. A standard curve was
generated by the “local Southern method” (in the
GENESCAN software) for every gel, which thus cor-
rected for any minor gel variations. The size-standard
patterns from each lane of any one gel were overlaid to
confirm allele assignment, and any allele missasignments
were corrected manually. Finally, the microsatellite al-
leles were sized against the standard curve. A peak was
called if it had 110 fluorescent units of peak height.

GENOTYPER 2.1 was used to filter out stutter peaks,
A� peaks, and signals that were generally low in relation
to main peaks in a range (peaks !32% of main-peak
heights were removed from the call). Templates for this
software and bins for allele assignment were constructed
on the basis of the sample data. A unique template was
prepared for each panel of results. Allele assignments for
each panel set of data were used to determine the average
size of each allele. This was then used as the size, �0.5
bp, for the allele and was assigned a bin name to reflect
the rounded size. This approach was used for the di-,
tri-, and tetranucleotide microsatellite alleles. Several
markers have a 1-bp mutation, and, to prevent overlap
of bin boundaries, bin assignments were designated as
the average size of the allele, with boundaries of �0.4
bp for these particular markers. We found that, if a
marker had a large size range, the alleles did not migrate

at exactly 2 bp. Thus, alleles at the beginning of the
range may have been rounded to odd whereas the alleles
at the end of the range rounded to even (or even to odd,
depending on the starting size). To make it clear that
these markers did not contain 1-bp alleles, the bins were
all changed to reflect the majority—that is, all odd or
all even. This process leaves the true allele sizes un-
changed; however, the distinction between the 1- and 2-
bp alleles was made more clear.

Each genotype generated by use of the template filters
and bins was manually checked and corrected as nec-
essary, and the results were saved in an Excel spread-
sheet. All manual genotyping was performed without
knowledge of the pedigree structure, to ensure unbiased
calls. If an allele did not fall within the bin range or if
the sample failed to amplify, the sample was repeated
once. All repeat samples were run individually, after di-
lution to reflect the amount of product of the marker
when loaded in a panel group. This enabled a more
correct fluorescent peak height and, therefore, more-ac-
curate bin assignment. The repeat results were then
added to the results table. Identities of samples were
checked by a macro written in the software program
Excel, to compare the original names to the final results
names in the tables; any labeling errors could then be
identified and corrected.

Genotyping Errors

Errors were counted for each complete genotype result
containing an error. This approach was taken—rather
than the counting of specific incorrect alleles—in order
to find the total number of affected genotypes that would
have been in the data had there been no error checking.

DNA samples were checked for Mendelian-inher-
itance errors, by use of the family pedigrees and the
Australian Genome Research Facility Data Manage-
ment Web site that runs PedManager version 0.9 (M. P.
Reeve, personal communication). The site manages the
PedManager options, allowing for correct ordering of
the columns in the pedigree-relationship file, marker or-
dering of the results file, and allele recoding. Each result
file and pedigree-relationship file was saved as a text,
tab-delimited Excel file. These files were then imported
into the Data Management Web site. The two files were
merged, producing a LINKAGE-style pedigree file in the
.pre or pre makeped format, which can then be used in
many of the linkage-analysis programs. Allele-recoding
information and marker-order information were pro-
duced and displayed at the site. The merged file was
easily cut and pasted back into an Excel spreadsheet.
PedManager also was used to check the autosomal ge-
notype results for pedigree-format errors, file errors, and
Mendelian-inheritance errors, thereby producing a file
that contained information for any errors found in a
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Table 1

Types of Errors Detected

ERRORS

Mutations Other Errors
Total

No. (%)
DetectedMicrosatellite

Priming
Site Total

Missed
Alleles Call

Sample
Swap Total

Mendelian inheritance:
LMSV2 (118,420 samples):

No. of errors 77 64 141 34 76 41 151 292 (.25)
Proportion of total errors (%) 26.37 21.92 48.29 11.64 26.03 14.04 51.71
Proportion of total genotypes (%) .065 .054 .119 .029 .064 .035 .128

FMS (22,500 samples):
No. of errors 25 16 41 150 53 64 267 308 (1.37)
Proportion of total errors (%) 8.12 5.19 13.31 48.7 17.21 20.78 86.69
Proportion of total genotypes (%) .11 .074 .184 .667 .235 .284 1.186

Concordance:
LMSV2 between gels (10,088 samples):

No. of errors … … … 5 7 4 16 16 (.16)
Proportion of total errors (%) … … … 31.25 43.75 25 100
Proportion of total genotypes (%) … … … .05 .069 .04 .159

FMS:
Between gels (4,488 samples):

No. of errors … … … 79 12 16 107 107 (2.38)
Proportion of total errors (%) … … … 73.83 11.22 14.95 100
Proportion of total genotypes (%) … … … 1.76 .267 .357 2.384

Within gels (3,840 samples):
No. of errors … … … 18 11 … 29 29 (.76)
Proportion of total errors (%) … … … 62 38 … 100
Proportion of total genotypes (%) … … … .469 .29 … .759

nuclear family including the alleles for parents and chil-
dren and a suggested erroneous individual and allele. In
this study, results files for each panel’s data were created
and then were automatically checked, by PedManager,
for pedigree errors. All Mendelian-inheritance errors
were manually checked and assigned to the categories
described in Appendix A. Of the identified Mendelian-
inheritance errors, those determined to be call errors
were further categorized, as described in Appendix B.

Duplication Error Analysis

Concordance within gels was checked by use of the
FMS data. Sixty-four DNA samples were run in dupli-
cate, for all 60 markers, in adjacent lanes. Concordance
between gels was checked for reproducibility by repe-
tition of the sample sets for the first panel, in both the
LMSV2 marker set and the FMS marker set. Each du-
plicate was compared with the original calls, for con-
cordance, and discrepancies were scored.

Results

We measured 124,000 genotypes with the LMSV2
marker set and 22,500 genotypes with the FMS marker
set. The failure rate for the LMSV2 study was 3.6%
(4,481 repeats), and that for the FMS study was 9.64%

(2,169 repeats). The majority of these failures were re-
solved by repeat genotyping.

PedManager identified 292 and 308 Mendelian-in-
heritance errors, respectively, in autosomal genotype re-
sults generated by use of the LMSV2 marker set and
the FMS marker set. There were no cases of nonpa-
ternity in any of the samples, suggesting that all Men-
delian-inheritance–errors inconsistencies were due to
other causes. Mendelian-inheritance–error types were
classified as described in Appendix A, and their pro-
portions are summarized in table 1. Graphic represen-
tation of the percentage of each error type is shown in
figure 1A, whereas figure 1B represents each error’s per-
centage of overall genotypes. For FMS, the predominant
errors were those classified as missed alleles, with sig-
nificantly more ( ; ) missed2 �120x p 590.12 P p 2 # 101

alleles in the FMS data than in the LMSV2 data. Missed
alleles in the FMS marker set were usually caused by
preferential amplification in which the allele of shorter
base-pair length amplifies in preference to the longer
allele (fig. 2).

Mutations in which there was a gain or loss of a
repeat unit were much more easily identified, in both
marker sets. Figure 3 illustrates an example of a 2-bp
mutation event. For this example, maternal alleles were
106 and 124, whereas paternal alleles were 118 and
122. The mutation has led to an expansion of the ma-
ternal allele in the offspring, resulting in a genotype of



Ewen et al.: Analysis of Genotyping Errors 731

Figure 1 Percentage of total errors (A) and total genotypes (B),
for each error type.

Figure 2 Preferential amplification. Paternal allele 168 (children
2 and 3) and 172 (child 1) did not amplify as well as did the allele
148.

118 (paternal allele) and 126 (new maternal allele). Mu-
tation rates were calculated as being (for�43 # 10
LMSV2) and (for FMS) per meiosis, by use�45.6 # 10
of the number of observed microsatellite mutations in
both study sets (table 2).

Mendelian-inheritance errors designated as “call er-
rors” were further classified into the groups described
in Appendix B and are summarized in table 3. Using
the results from the LMSV2 marker set, we found that
incorrect calls were less than half (30.26%) of the hu-
man-error calls, whereas 28.94% were GENOTYPER
handling errors (i.e., incorrect updating bin assign-
ment), 17.11% were sample-loading errors (i.e., due to
lane leakage), and 7.89% were due to low fluorescence

of a sample. In total, 151 human-related errors were
made with the LMSV2 marker set and 267 were made
with the FMS marker set. Error rates for the LMSV2
and FMS marker sets were thus calculated as being
0.13% and 1.19%, respectively (table 2). These error
rates were calculated by subtraction of the observed
mutations from the total error counts.

Finally, we tested the sample-duplication processes,
for their ability to detect errors and to assess our process
for reproducibility. We first ran the same panel of PCR
products in consecutive lanes of the same gel and then
on gels run on different days. We found a discordance
of 0.76% when testing within a gel (3,840 genotypes,
in FMS) and found a discordance of 2.38% (4,488 ge-
notypes, in FMS) and 0.16% (10,088 genotypes, in
LMSV2) between gels. As in the case of the Mendelian-
inheritance errors, concordance-error types were as-
signed to the categories described in Appendix A, and
the results are summarized in table 1.

Discussion

One current approach to the mapping of loci involved
in complex diseases is a genomewide scan using micro-
satellite genetic markers. A complete understanding of
the types of errors associated with the measurement of
microsatellite marker size used for genome screens can
help to maximize the information obtained from the final
data. Commercial marker sets are made from primers
chosen for both their location and ability to amplify
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Figure 3 Microsatellite mutation to new allele. The child’s ma-
ternal allele (124) has mutated to a new allele (126), whereas the
paternal allele (118) is normal.

Table 2

Mutation/Error Rates

Marker Set
No. of

Genotypes
No. of
Errors

Error
Rate
(%)

No. of
Mutations

Mutation
Rate
(%)

LMSV2 118,420 151 .13 77 �43 # 10
FMS 22,500 267 1.19 25 �45.6 # 10

DNA under common PCR conditions. Any primers that
display amplification problems are substituted by those
which perform optimally. In contrast, when fine-map-
ping sets are constructed, markers are chosen according
to their chromosomal location, and so their amplifica-
tion performance may not always be optimal. This dif-
ference in primer-design strategy was reflected in the in-
itial PCR failure rates found in this study. At the outset,
this observation prompted us to repeat all failed samples
once, immediately increasing the amount of usable data
for any linkage study. We also found that the total (de-
tectable) human-error rate (as defined by Mendelian-
inheritance errors) was significantly higher ( 2x p1

; ) for the FMS marker set�124561.49 P p 4 # 10
(1.19%) than for the LMSV2 marker set (0.13%),
mainly because of differences in amplification of fine-
mapping markers and, thereby, difficulty in the scoring
of some alleles. It is important to note that this study
was genotyped independently of knowledge of the ped-
igree structure, to prevent introduction of bias. Pedigrees
were referred to only for error analysis.

Error checking using concordance methods found
0.16% error between gels of the LMSV2 marker set and
2.38% between gels of the FMS marker set; in com-
parison, use of Mendelian-inheritance–error checking to
identify errors found more errors in the LMSV2 mark-
er set (0.25%) but fewer in the FMS marker set (1.37%).
There were only three types of errors (i.e., missed alleles,
call errors, or sample swaps) identified through con-
cordance checking, with all microsatellite or priming-
site mutation–related errors missed. Mendelian-inheri-
tance–error checking found similar numbers for the
error types listed above (0.13% for LMSV2 and 1.19%

for FMS). This indicates that Mendelian-inheritance–
error checking is a valuable method for the detection
of these error types. Concordance checking, however,
will miss the mutational error types, which can be a
large proportion of the errors (nearly 50% of errors in
LMSV2 were missed).

Overall, 26.37% of all errors found in the LMSV2
marker set were due to mutation of the microsatellite
sequence, and 21.92% were due to assumed mutations
in the priming sites (i.e., to null alleles). This represents
nearly half (48.29%) of all errors; and no improvement
in genotyping methods will change the frequency of
these errors. The remaining 51.71% of errors are cor-
rectable errors; half of these (26.03% of total errors)
are caused by call errors, whereas 11.64% are errors
caused by alleles that have been missed and 14.04%
are errors caused by mislabeling of samples. The pro-
portion of errors is different for the FMS marker set.
Only 13.31% of all errors were due to mutation events
or null alleles. However, if the overall percentage of
affected genotypes is compared with that in the LMSV2
study (0.184% in FMS, vs. 0.119% in LMSV2), and if
the mutation rates ( and , respec-�4 �43 # 10 5.6 # 10
tively) are compared, they are not significantly different
(after multiple-comparison Bonferroni corrections of P
values). Of the correctable errors, 20.78% of errors
were due to sample swap, whereas 17.21% of errors
were due to call errors.

Between gels, concordance checking found more er-
rors in the FMS data than did Mendelian-inheri-
tance–error checking. The predominant reason for er-
rors in the FMS data was missed alleles. Approximately
half (48.7%) of all FMS errors found by Mendelian-
inheritance–error checking and nearly three-quarters
(73.83%) of all FMS errors found by concordance
checking were due to missed alleles, whereas only
11.64% of LMSV2 errors were missed alleles (Men-
delian-inheritance–error checking). Even though con-
cordance checking of the FMS marker set found more
errors overall, only the number of missed alleles iden-
tified was statistically different ( ;2x p 25.47 P p1

). It should be noted that the 2.38% discor-�74.5 # 10
dancy rate for duplicate genotypes in the FMS data
reflects a large contribution from three markers with
high rates of preferential amplification, as well as a sam-
ple swap, errors that were easily eliminated prior to
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Table 3

Call Errors

CALL ERROR

Genotype
Not Updated

Incorrect
Call Leak Sample Binning Other Total

LMSV2 (118,420 samples):
No. of errors 6 23 13 6 16 12 76
Proportion of total errors (%) 7.89 30.26 17.11 7.89 21.05 15.8 100
Proportion of total genotypes (%) .005 .019 .011 .005 .014 .01 .064

FMS (22,500 samples):
No. of errors 1 24 … 5 21 2 53
Proportion of total errors (%) 1.9 45.28 … 9.43 39.62 3.77 100
Proportion of total genotypes (%) .004 .1067 … .022 .093 .009 .2347

linkage analyses. Thus, the rate of errors that might have
gone undetected in the absence of duplicate genotyping
was substantially smaller—and certainly !1%. Since the
focus of the present study is on the types of errors de-
tected by different methods, rather than on error rates
of particular studies, more-detailed analysis of the error
rate for the FMS data will be presented elsewhere.

Call errors in both the LMSV2 data and the FMS
data were further analyzed to determine where im-
provement could be made. More than 50% of errors
were due to software handling, gel handling, fail cri-
teria, and allele binning; 7.89% of call errors in the
LMSV2 data were due to the genotyping software not
being updated to capture the change after a manual
correction, and 17.11% were due to gel handling (i.e.,
lane leakage), which should be reduced if more care is
given by the operator. An increase (from 10 fluorescent
units to 15 fluorescent units) of the minimum peak
height as the threshold for failure of a sample may also
help to reduce errors. Binning accounted for 21.05%
(in LMSV2) and 39.62% (in FMS) of all call errors.
LMSV2 markers were generally easier to bin, because
of preselection and PIG-tailing; however, markers dis-
playing 1-bp alleles or amplification problems still
caused a number of bin-assignment errors. To reduce
these errors, we suggest that bin boundaries be made
smaller, which may increase the failure rate of the sam-
ple but should reduce incorrect bin assignments and,
therefore, the overall number of errors.

Null alleles are likely to be due to a mutation in one
of the priming sites of the amplifying primers. This con-
tention would need to be verified by sequencing the
primer regions. There was a large percentage (112% of
errors) of priming-site mutations, in both the LMSV2
data and the FMS data. At least in the LMSV2 data,
some of these findings are explained by null alleles,
since, for three of the markers, these alleles segregate
in many of the families (data not shown). Other studies
also have found that these three microsatellites have null
alleles (data not shown), suggesting that the priming-

site mutations are possibly quite old and prevalent in
Australian populations.

New mutations arising within the microsatellite re-
peat were used to calculate mutation rates of 3 #

and for LMSV2 and FMS, respectively.�4 �410 5.6 # 10
These calculated rates are in agreement with the rate of

that was found by Ghosh et al. (1997) and�44.53 # 10
with rates measured in other studies (Tautz 1989; Hen-
derson and Petes 1992). Errors arising from mutations
were left in the data, since they should not necessarily
be removed from data sets during the initial analysis;
rather, their identity should be made known to the link-
age analysts, for their assessment.

Importantly, this study has suggested strategies for
reduction of laboratory error. Genotyping laboratories
are required to process a large number of genotypes
within a reasonable time frame. Suggestions for de-
creasing the error rates have included repetition of all
assays, repetition of the running of gels on common
PCR material, or having duplicate allele calls. Our data
would indicate that none of these approaches would
decrease the error rate sufficiently to warrant applica-
tion to complete marker sets, especially commercial sets.
This has been conclusively demonstrated by our show-
ing that the rate of discordance between repeat samples
(i.e., 0.16% error detected) is much less than the overall
detected error rate of 0.25% in the LMSV2 data. By
relying on duplication to identify all errors, our results
have shown that a whole group of errors caused by
mutations and null alleles will be missed. It is worth
noting that concordance checking using duplicate sam-
ples between gels can be of benefit for further error
reduction in markers identified, by Mendelian-inheri-
tance–error analysis, as displaying preferential ampli-
fication. This observation is of greater importance in
fine-mapping data sets, in which the marker perform-
ance is not as robust as that in the commercial data set.

The single greatest source of preventable errors in our
laboratory is incorrect labeling of samples. This can be
ameliorated by routinely confirming the identity of sam-
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ples by double typing the sample sheets and checking
the label concordance both before and after the run, by
means of simple macros written in Excel; any incorrect
sample sheets are then easily replaced. These simple pro-
cedures should remove all sample-file errors.

The use of PedManager (or other pedigree-checking
software—such as PedCheck, from the Division of Sta-
tistical Genetics, Department of Human Genetics, Uni-
versity of Pittsburgh) (O’Connell and Weeks 1998) en-
ables any marker-related problems or mutation events
to be easily identified, provided that genotypes of rel-
atives are available and that the pedigree information
is correct. As a result of our studies, we routinely repeat
any marker showing 15% Mendelian-inheritance errors
that cannot be explained as either a laboratory error or
a null mutation. This ensures that, if a marker has a 1-
bp allele or preferential amplification, then two calls are
made from different amplifications, ensuring more ac-
curate results.

It is impossible to detect all errors; however, recog-
nition of the type and cause of allele-calling errors will
reduce their incidence. In large-scale genotyping labo-
ratories using either commercial marker sets or custom-
designed fine-mapping sets, the reduction of error in-
cidence is crucial. Finally, the inclusion of family data
to identify Mendelian-inheritance errors is imperative
for the success of projects, since errors can seriously
interfere with data interpretation. This study has dem-
onstrated the value of family genotyping data, since they
allow Mendelian-inheritance–error checking. It also has
highlighted the value of close collaboration between the
client and the genotyping laboratory, since such com-
munication ultimately provides the highest-quality data.
The genotyping laboratory should have access to the
pedigree data, to detect poorly performing markers;
however, the genotyping analyst should not attempt to
correct errors that are not due to human error, since
this may lead to bias. Such a procedure also allows the
detection of pedigree errors and sample swaps at the
earliest point in time. This enables early decisions to be
made regarding the potential need to collect further
samples.

The remaining genotyping errors are easily identified
by the statistical geneticist who may be able to recover
some data. Alternatively, the prudent strategy is to de-
clare that the genotypes found to be in error are missing
data.

Concordance checking alone will not identify some
errors, such as those caused by mutations, since these

will appear consistently. Furthermore, even after con-
cordance checking, some human errors may remain hid-
den. In contrast, Mendelian-inheritance–error checking
is able to detect a broader range of errors, including
mutations. The ability to detect errors by means of Men-
delian-inheritance–error checking is highly dependent
on the amount of genotyping data available. In general,
the availability of parental genotyping data determines
the efficacy of Mendelian-inheritance–error checking.
For example, in sibling-pair data for which no parental
genotyping data are available, it is not possible to carry
out Mendelian-inheritance–error checking on autoso-
mal data. In late-onset diseases, such as glaucoma, this
deficiency is a common occurrence and has considerably
hampered linkage analysis investigating such diseases.
An alternative is to examine such sib-pair data for the
presence of double recombinants, effectively using a
multipoint approach (Douglas et al. 2000). This is a
successful strategy in experimental crosses but has
proved both to have a high false-negative rate with
markers of density !5 cM and to be prone to bias (Bahlo
and Broman 1999).

This study has shown that the optimal strategy for
genotyping-error checking is dependent on the type of
study. Mendelian-inheritance–error checking should be
used for all types of genotyping studies, since it identifies
error types additional to those detected by concordance
checking. For fine-mapping studies, where the markers
perform less consistently, there is an advantage to con-
cordance checking, and it should be employed at least
for markers found to be problematic. When markers
were more robust, as in the commercial sets, we did not
find any increase in the errors detected by concordance
checking, and so we would suggest that Mendelian-
inheritance–error checking should identify most of the
initial errors. These precautions will optimize the
amount of usable data derived from a project and so
will increase the chance of discovering linkage.
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Appendix A

Mendelian-Inheritance–Error Categories

Microsatellite mutation Alleles are called correctly but there is a size shift of 1–2 bp (in the LMSV2 data) or 1–4 bp (in the FMS data),
depending on repeat type

Priming-site mutation An individual is missing an allele from one of the parents or has inherited a “null” (nonamplifying) allele from
a parent

Missed allele An allele in the genotype is missed during calling
Sample swap Sample is incorrectly labeled
Call error Allele is incorrectly assigned

Appendix B

Call-Error Subcategories

Binning Bins are incorrectly assigned, so that samples are incorrectly binned or, because of inconsistent A� preferential
amplification, fall out of the bin

Sample Alleles are sized incorrectly, because of low fluorescence
Incorrect call Alleles are incorrectly assigned
GENOTYPER not updated Manual genotype change is performed, but software is not updated with the correction
Leak The adjacent lane’s sample bleeds through to the lane during loading and is called when genotyped
Other Pull-up peaks caused by spectral overlap or overfluorescence

Electronic-Database Information

The URLs for data in this article are as follows:

Australian Genome Research Facility, http://www.agrf.org.au/
(for PedManager version 0.9)

Division of Statistical Genetics, Department of Human Ge-
netics, University of Pittsburgh, http://watson.hgen.pitt.edu/
register/soft_doc.html (for PedCheck)
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